
Interactive and Cooperative Visualization of
Unsteady Fluid Flow

Michael J. Gerald-Yamasaki

RNR Technical Report RNR-92-018, March, 1992

Numerical Aerodynamic Simulation Systems Division

NASA Ames Research Center, Mail Stop T045-1
Moffett Field, California 94035-1000

yamo@nas.nasa.gov

March 27, 1992

Interactive and Cooperative Visualization of

Unsteady Fluid Flow

Michael J. Gerald-Yamasaki

Numerical Aerodynamic Simulation Systems Division
NASA Ames Research Center, Mail Stop T045-1

Moffett Field, California 94035-1000

yamo@nas.nasa.gov

March 27, 1992

Abstract

Tempus Fugit/Interview is a computational fluid dynamics

visualization application for which processing is distributed between

high performance graphics workstations and supercomputers. Tempus

Fugit interactively creates images animated over time from large data

sets representing unsteady fluid flow. The companion program

Interview provides facilities for the images to be viewed from a second

workstation, creating a cooperative visualization environment. The way

in which the computation is partitioned between the supercomputer and

the workstations is critical to the capability of the application to present

simultaneous, identical, animated images of fluid dynamics to more

than one user.

1. Introduction

Scientific visualization has become increasingly important in the analysis of large

data sets. The pattern-recognition capabilities of the visual sense are utilized to

analyze much greater quantities data than is possible with purely numeric

approaches [10]. In the study of computational fluid dynamics (CFD) visualization is

used to depict the physical characteristics of computationally simulated fluid flow

[21].

Despite advances in the delivery of computational power to users of high-

performance graphics workstations, there remain visualization applications for

which the computational requirements can only be met by supercomputers.

Distributed processing is used to provide the user with the combined capabilities of a

high performance graphics workstation and a supercomputer under the control of a

single application [7, 15, 25]. The supercomputer's capabilities of great processing

power, large memory, large disk storage capacity, and fast disk access are necessary

to store, access, and calculate over the large data sets endemic to unsteady flow

analysis. The high speed graphics of the workstation transform numerically

-1-

calculated data into high resolution animated images of flow features. The human-

machine interface environment, also provided by the workstation, adds mechanisms

for controlling the visualization system.

The greatest impediment to developing systems for visualization of unsteady fluid

flow is the size of the data, which constrains interactive response time. Effective use

of the large volume, fast access disks on the supercomputer is essential to the

development of a system capable of interactively presenting animated images

extracted from large time-dependent data sets.

In order to provide an interactive interface for visualization of unsteady fluid flow,

the computational tasks must be partitioned between the graphics workstation and

the supercomputer in a way which efficiently utilizes the strengths of each

environment.

As the visualization application utilizes the advanced features of high-performance

graphics workstations and the computational power available through distributed

processing with supercomputers, the individual scientist is presented with more and

more information-laden images. The ability of the scientist to share the

information acquired during the visual analysis process with another scientist

becomes more difficult. Images created by such visualization applications are not

transportable beyond the workstation without some loss of informational content.

Recently developed computer tools which facilitate collaboration have shown that a

WYSIWIS (what you see is what I see) interface is valuable. This type of interface

provides for the "presentation of consistent images of shared information to all

participants" [31, 32]. Such an interface to a visualization application would allow

scientists to see and interact with each other's work through their workstations.

Visualization, then, becomes a communication medium and the graphics workstation

a platform for the exchange of ideas.

Cooperative visualization of unsteady fluid flow requires the integration of the two

main services that computer networks provide, the movement of information from

one machine to another and the accessibility of computational resources by one

machine from another. How efficiently the integration can be accomplished depends

upon how the computation is partitioned between the constituent processors.

Tempus Fugit ("time flies") is a tool for visualizing unsteady fluid flow. Processing in

Tempus Fugit is distributed between a high performance graphics workstation and a

supercomputer. The companion program Interview provides facilities to share the

supercomputer computational environment with a second workstation, creating a

cooperative visualization environment [15].

The development of Tempus Fugit/Interview is necessarily an interdisciplinary

endeavor involving CFD, graphics, distributed processing, supercomputing, and

computer-supported cooperative work (CSCW). The first part of the paper will

-2-

describe Tempus Fugit and the requirements imposed by visualization of large time-
dependent data sets in a distributed environment of supercomputers and graphics
workstations. The second part of the paper will concentrate on Interview and the
requirements for sharing the distributed environment created by Tempus Fugit.

2. Background

For CFD, the increased capabilities of supercomputers have been used to

dramatically increase the size and complexity of numerical simulations of fluid flow

[25]. As the size of the simulations increase, the size of the solution data also

increases and can result in immense data sets representing the physical

characteristics of a flow field. The flow solution can be steady state, in which the

physical properties at each node do not change over time, or unsteady, in which

changes in the physical properties are observed over time.

A number of systems are available for visualization of steady state fluid flow [2, 21,

34]. These systems provide the capability of applying a variety of visualization

techniques such as particle paths, isoscalar surfaces, cutting planes, etc., on steady

state flow solutions to produce static images. Interactive manipulation of viewing

position, hidden surface removal, and shading by the application of a lighting model

provide important three-dimensional cues in the two-dimensional screen images

produced by these systems.

The greatest impediment to developing systems for the visualization of unsteady

fluid flow is the size of the data, which constrains interactive response time. Several

systems have been developed to analyze time-dependent data sets which will fit in

main memory [4, 19, 30]. The greatest difficulty in providing interactive response for

unsteady flow visualization emerges when the size of the data exceeds the amount of

data which can be contained in main memory.

Smith, et al. [30], discuss several methods of reducing unsteady flow solution data to

fit into main memory. Each method allows the portrayal of animations of unsteady

flow phenomena, but requires a decrease in resolution in time and/or space or a

limitation to a single visualization technique. As such, the exploratory nature of the

visualization process is inhibited.

Visualization of unsteady fluid flow in a virtual environment has utilized data

resident in the main memory of a high-performance graphics workstation [4]. A

recent addition to this system distributes processing to a supercomputer. Plans to

provide for interactive response for calculation over disk-resident data have been

developed [5].

Visual3, a visualization tool for unsteady, unstructured data sets, does not require

main memory residence for the data set [18]. However, interactive performance

decreases as the data set reaches a size that cannot be contained in main memory.

-3-

3. The Computational Environment

One of the main objectives of the Numerical Aerodynamic Simulation (NAS)

Program at the NASA Ames Research Center is the provision of a comprehensive

computing environment to facilitate computational aerodynamics and fluid

dynamics research [1]. To this end, the NAS Processing System Network (NPSN)

was developed. The NPSN contains a wide range of computer systems, including

several supercomputers (Convex C3240, Cray 2 4/256, Cray YMP 8/256, Intel IPSC

860, TMC 32K CM2) and a small army of Silicon Graphics IRIS workstations.

Several networks provide connectivity and a basis for network development and

research. These networks include Ethernet, UltraNet, and FDDI.

The main vehicle for distributing computation between supercomputers and

workstations in Tempus Fugit/Interview is Distributed Library (dlib) [36]. Like

many systems which provide for distributed processing, dlib is a high level interface

to network services based on the remote procedure call (RPC) model [3, 12, 33, 35].

However, unlike most of these systems, dlib was developed to provide a service which

allows for a conversation of arbitrary length within a single context between client

and server. The dlib server process can allocate memory for data storage and

manipulation, as well as store state information which persists from call to call.

While RPC protocols are frequently likened to local procedure calls without side

effects, dlib more closely resembles the extension of the process environment to

include the server process.

Using dlib is much like developing a library of routines, say, an I/O library, on a local

system. Application code is linked to routines in an I/O library. The I/O library

contains simple routines which give access to the I/O devices controlled by the

operating system device drivers, as illustrated in figure 1. The I/O device drivers, in

turn, control the somewhat more complicated exchange of data with external

devices.

To execute a routine on a remote host, all the information necessary to execute the

routine in the remote environment must be transmitted over the network to a

remote server process. After the routine executes, results must be transmitted back

to the local client process. Dlib provides utilities to automatically create the code

which performs the network transactions required to invoke and execute the routine

in the remote environment and to exchange information between the client and

server processes.

-4-

Operating I

I_ System]

evice Driver

LI Ke_Entry_nts]

I/0 Library

User

Process

Figure 1 : Access to Local I/O Devices Using Local I/O Library.

Due to the persistent nature of the remote environment, dlib is able to coordinate

allocation and use of remote memory segments and provide access to remote system

utilities. The application, through dlib, can "link" to the remote system's I/O library,

for example, to utilize the remote system's I/O devices as depicted in figure 2. The

illustrated client process can utilize the monitor and mouse via the local I/O library

and operating system. The client process can also utilize the remote disk via dlib

which communicates with a remote server process. The remote server process has

access to the remote disk via the remote I/O library.

Tempus Fugit/Interview uses dlib to allow the workstation clients to exploit the

supercomputer's processing power, large memory, large disk storage capacity, and
fast disk access.

-5-

Operating
System

I/O Device Drive

Kernel Entry

I/O Library

Client

Process

Network

S

Operating
System

Device

Entr

I/O Librar

Server

Workstation Remote System

Figure 2: Access to Remote I/O Devices Using Dlib and Remote I/O Library.

4. The CFD Application

CFD research can be divided into three steps: grid generation, numerical

simulation, and post-process analysis. A numerical grid is created describing an

object and the surrounding space. Flow solvers calculate physical properties of the

flow at the nodes of the grid.

A typical data set consists of a grid file, containing the x-, y-, and z-coordinate values

of the grid nodes, and a solution file, containing the values for density, energy, and

momentum for each grid node. Density and energy are scalar values while

momentum is a three-dimensional vector. A steady state solution data set contains a

grid file and a solution file. An unsteady solution data set contains a grid file and a

solution file per time step. Typical grid sizes can be as large as several million nodes.

Due to storage considerations, unsteady solution data sets are usually truncated in

some manner but can still consume multiple gigabytes of storage space.

From the density and energy scalar fields and momentum vector field, other scalar

-6-

and vector fields can be calculated. The widely used PLOT3D CFD visualization tool
developed by Pieter Buning [34] provides facilities for building fields for about one
hundred different scalar and vector functions and provides the model for many CFD
visualization tools. The FAST CFD visualization tool provides a scalar and vector
field calculator as well as a number of built-in functions [2].

A variety of visualization techniques can be applied to these scalar and vector fields
for post-process analysis. These include particle paths, isoscalar surfaces, cutting
planes, and topology. Graphics techniques are applied to color, shade, light, project
and otherwise render images on the workstation monitor.

The process of visualizing CFD can be understood as the transformation of data
(figure 3). Raw data is the grid data and solution data produced by flow solvers. The
raw data can be processed by applying a function producing a scalar or vector field
and further processed and formatted to produce data which can be understood by
graphics library routines. This processed data is known as geometry data.
Geometry data is rendered to form image data.

1.234 3.986

2.456 9.345

3.213 5.837I
0.19<3 I

_11111111.ool2.891 I

g.021 I"_[1_ 0_31

Raw Data Processed Data

h=.=
v

Image Data

Figure 3: Visualization Process.

Figure 4 shows the relative data sizes for the various steps of the visualization

process. The figure for raw data under each visualization technique is the amount of

raw data that is used to produce the geometry data. A word size of four bytes is

used although for some machines (e.g., Cray 2, Cray YMP) the word size is eight

bytes. Differences in the size of raw data processed and the sizes of geometry and

image data created are parameters to consider when choosing how to partition

computation.

A grid surface is a subset of the curvilinear grid (i-, j-, k-coordinates) for which one of

the three components is a constant. The geometry of a grid surface is made up of the

x-, y-, z-coordinate locations of the surface and a color value representing the scalar

function value at each node for each time step. The image size is calculated for a

megapixel display with 24 bits per pixel for color information. Ballpark figures for

cutting plane polygons (20,000) and isosurface polygons (50,000) are used. The

cutting plane contains a color value for a scalar field. The isosurface includes

polygon vertex coordinates and surface normals.

-7-

Data Type

Grid:

Solution:

Grid Surface:

Raw:

Geometry:

Image:

Cut Plane:

Raw:

Geometry:

Image:

Isosurface:

Raw:

Geometry:

Image:

Data Description

100 x 100 x 100 nodes x 3 coordinates

100 x 100 x 100 nodes x 5 values x 100 time steps

Size

12 MBytes

2000 MBytes

100 x 100 nodes x 5 values x 100 time steps

100 x 100 nodes x 1 value xl00 time steps

1024 x 1024 pixels x 24 bits x 100 time steps

20 MBytes

4 MBytes

300 MBytes

2 x 100 x 100 x 5 values x 100 time steps

20,000 polygons x 3 x 3 coordinates x 3 values x

100 time steps

1024 x 1024 pixels x 24 bits x 100 time steps

40 MBytes

216 MBytes

300 MBytes

100 x 100 x 100 nodes x 5 values x 100 time steps 2000 MBytes

50,000 polygons x 3 x 3 coordinates x 3 x 3 normals x

100 time steps 1620 MBytes

1024 x 1024 pixels x 24 bits x 100 time steps 300 MBytes

Figure 4: Data Sizes.

5. Partitioning

Distributed processing can be applied to the visualization process by partitioning the

computational tasks between a supercomputer and high performance graphics

workstations. How this partitioning is accomplished will determine the ability of the

visualization system to provide a distributed environment which best utilizes the

capabilities of the graphics workstation, the supercomputer, and the network. This

section describes several possible partitions: the distributed file system partition,

the frame buffer partition, the distributed graphics library partition, and the

geometry partition.

Figure 5 illustrates a distributed processing partition in which the raw data resides

on the server machine and is made available for processing on the client. The use of

distributed file systems such as Network File System (NFS) [27] is often given as an

example of distributed processing. This scheme allows the client to utilize the disk

resources of the server. Another example of this type of partition is when a server

process creates the raw data and delivers it directly to a client process. In CFD

visualization this method has been used to preview data as it is produced by a flow

solver. Intermediate solutions are produced by a flow solver and transferred over the

-8-

network to a visualization application instead of being written to disk.

9.345 I

5. 71
o.l_I
i

9.0211

Raw Data

Network

Processed Data

k
V

Image Data

Disk

w

Fileserver

(Supercomputer)

Workstation Monitor

Figure 5: Distributed File System Partition.

A small savings disk access time and space is gained from this method. However, for

a visualization application, this partition would only utilize the high disk-to-memory

speed of the supercomputer, leaving the computationally intensive processing of the
data to the workstation.

The frame buffer partition is illustrated in figure 6. All of the processing is

accomplished on one machine and the image is transferred to another for display.
The image can be transferred as pixel image data or further transformed into video

[14, 17].

This has been found to be useful in that the image display takes place at a different

machine and location than the calculation and rendering of the image, avoiding a

requirement of geographical proximity of the user to the machine which is carrying
out the calculation.

-9-

Raw Data Processed Data

Image Data

v

Image Data

Disk

Network

Supercomputer Framebuffer

Figure 6: Frame Buffer Partition.

Monitors

Images can turn out to be quite a large amount of data to transfer over the network

(figure 4). The data transfer rate, at 24 frames per second, would be approximately

72 MBytes per second for an image with three MBytes of pixel data. Using NTSC

video transmission can decrease the volume of data to be transferred but only at the

cost of greatly reducing the quality of the images. The advent of gigabit-per-second

networks [6, 8, 13] removes a potential bottleneck in the performance of such

distributed applications, but high speed networks are not a panacea. Even though

some networks may be capable of transferring data at a rate of one gigabit-per-

second, it will be some time before workstations are capable of sending or receiving

data at that speed. Even if a one gigabit-per-second throughput rate were attainable

by workstations, image data transfer at animation speeds would be difficult to

-10-

sustain.

3.986 I9.345IIIIIIIIIIIIIII2,_
IIJIIIIIIIIIIII3.213s8371 ,_

0.199]• 11111t11112_92
_111111,OOl2.891 I

"_1 0_:731 9,021 I

Raw Data Processed Data

v

Image Data

Network

Disk Supercomputer Workstation Monitor

Figure 7: Distributed Graphics Library Partition.

A third partition is at the transition between processed data and the creation of

image data (figure 7). Graphics routines transform geometry data into images. The

graphics library call sequence may be transferred over the network and executed on

another machine. This partitioning has the advantage that the programming effort

is carried out on the computation machine (supercomputer) and graphics calls made

as though the image creation was local even though it its carried out on another

machine. A distributed graphics library performs the network transactions [29].

Network window systems, such as the X window system, are another example of the

utilization of the distributed graphics library type of partition [23].

Use of a distributed graphics library partitions the computation in a way which

utilizes the strengths of the supercomputer and of the graphics workstation. It is

advantageous to be able to use distributed processing which does not involve

graphics. This ability is unfortunately not available with the distributed graphics

library or network window system approach.

The distributed file system partition, the frame buffer partition, and the distributed

graphics library partition are designed to have minimal impact on the basic design of

an application which is being modified to distribute processing.

-11 -

1111111111111112.4s69.3451 _ -
IIIIIIIIIIIIIII3.213s.837I
_lllllillll 2"!9_2°_]_l
_HIIII _.oo,2.e9,I

I
Raw Data Processed Data Processed Data

Network

r

Image Data

Disk Supercomputer Workstation Monitor

Workstation Monitor

Figure 8: Geometry Partition.

With a distributed graphics library partition each new image requires network

transactions. The network transactions and the associated processing overhead can

be reduced by moving the geometry data to the workstation. The entire rendering

process can then be completed on the workstation without involving the network for

transferring additional command information or data (figure 8).

6. Tempus Fugit

Tempus Fugit was designed with the philosophy that with an interactive application

a user will be willing to wait for a short period of time, say up to one minute, for a

visualization to be presented, if for a great majority of the time the application

-12-

provides immediate response. Tempus Fugit provides immediate interactive
manipulation of viewing position, which is important for providing three-
dimensional cues in the two-dimensional screen images. Animation control is also
an important immediate interactive capability, since the main focus of the analysis
of unsteady fluid flow is on the variations of the flow over time.

Tempus Fugit is an application for visualizing unsteady fluid flow. The
transformation of raw data to geometry data by the application of various
visualization techniques is accomplished on the supercomputer and controlled by a
mouse-driven interface on the workstation. The geometry data is transferred over a
connection to the dlib client on the workstation, hereafter called the Tempus Fugit
client, where time-sequenced animated images are produced as in the geometry
partition described above (figure 8).

Grid Surfaces

Highest velocity banq

Flow Direction

"_ Near cylinder surface

Figure 9: Grid Surfaces Shaded by Velocity Magnitude.

-13-

The process of selecting a visualization technique to be applied, transforming raw

data to geometry data, transferring the geometry data to the workstation, and

rendering the data into an animated image can result, for instance, in an animation

of a grid surface. Several grid surfaces can be added to the animation (figure 9).

The process of extracting data from disk, applying a visualization technique to form

geometry data, and transferring the geometry over the network, is time consuming.

This is the portion of the application which is performed during short wait periods.

The two I/O steps, extracting data from disk and transferring data over the network,

are most efficient when applied to large buffers of data. One method of making the

entire visualization process more efficient, then, is to maximize the size of disk reads

and transfers over the network.

When the size of the raw data exceeds what can be contained in main memory, the

organization of the data on disk becomes an important performance factor. Just as

one organizes data in main memory to avoid bank conflict for high performance

computing applications, the data on disk must be organized for optimal use with

visualization applications.

7. Facilitating Collaboration

The high resolution, three-dimensional, color, animated images which are the result

of visualizing unsteady fluid flow are not transportable beyond the workstation

without some loss of informational content. Much of the three-dimensional

character of the images is lost without the capability to perform interactive view

transformations. Recording the animated images using video is limited by the

resolution of NTSC video encoding and eliminates interactive capability. Color

printing or photography is comparable in color resolution and in some cases is

superior in image resolution to the workstation graphics monitor. However, much of

the information to be analyzed is in the animation of the images and cannot be

captured with still images.

The lack of transportability of these images complicates communicating the results

of the visualization process to collaborators, and makes the collaboration process

that much more difficult. A cooperative visualization tool, which would allow the

users to simultaneously view the images as they are created, would create a shared

environment for analyzing the images and facilitate the dialog so important to

collaboration.

The emerging field of CSCW emphasizes the use of computers to promote

collaboration. One model of a collaborative environment is represented in the simple

diagram in figure 10. While conversation is serial and ephemeral in nature, shared

-14-

spaceis substantial and provides another medium for communication [28].

Shared Space

Scientist _'- Conversation ._= Scientist

Figure 10: Collaborative Environment Model.

Shared access to information makes symbolic representation more concrete. Stefik,

et al. use the chalkboard as a metaphor for a shared space for information storage

[32]. The idea of WYSIWIS follows from this basic model.

With typical visualization applications a single user is "alone" with the data and the

images which are the result of the visualization process. When an interesting image

is produced on the graphics monitor, it is common in our laboratory to call co-workers

to the monitor to see what has been produced. With the shared view of the monitor,

the collaborative environment outlined above is created (figure 11). Collaborators

who are in another building or another city, however, cannot participate in this
interaction.

I hics Monitor

View

/
Scientist _._" Conversation _ Scientist

Figure 11- "Gather Around" Collaborative Environment.

Tempus Fugit/Interview builds on the basic model to provide an environment in

which distance is not an impediment; the shared space resides on the supercomputer

and the images are rendered on separate graphics workstations (figure 12).

-15-

Network

Supercomputer

(Cray YMP)

Graphics Monitor Graphics Monitor

(SGI IRIS) (SGI IRIS)

Figure 12: Tempus Fugit/Interview Collaborative Environment.

8. Interview

Dlib was originally designed on a model of one client to one server. To allow multiple

clients to share the server process environment, the dlib server was modified to

accept more than one connection. Each connection is selected for service by the

server process in the sequence that the dlib calls are received. The dlib calls are

executed by the server in a single process environment as though there were only
one client.

The dlib server executes the transformation of raw data to geometry data on the

supercomputer and provides a substrate for the shared space of the collaborative

environment model (figure 10).

The Tempus Fugit client will have been active for an arbitrary length of time when

Interview is invoked. As such, the image the Tempus Fugit client is presenting may

contain a number of graphical objects. Interview creates a connection to the dlib

server on the supercomputer and to the Tempus Fugit client (figure 13). The Tempus

Fugit client maintains a list of descriptions of the graphical objects it is currently

viewing. Upon request this list is sent to the Interview client. From this list, the

-16-

Interview client has the information to request the geometry data from the server

process using dlib calls in the same way that the Tempus Fugit client requested the
data.

dlib

Operating
System Server

Process

I Network

I Ope!ating

Operating I
System System

dlib

Client
Process

Tempus Fugit Interview
Client Client

dlib

Client
Process

Figure 13: Tempus Fugit / Interview Software Architecture.

When the geometry data is transferred to two workstations, the basis for sharing the

information has been established. The application of visualization techniques to the

raw data creates the geometry data. With a copy of the geometry data, each

workstation can render images distinct from the other workstation. By exchanging

the rendering control information the two workstations can generate identical

images. So, there are two levels of sharing which can be implemented with a

geometry partition, geometry data and rendering controls such as view
transformations.

The Interview client is now able to present images created from the same geometry

data as the Tempus Fugit client. Interactive controls for view transformations and

animation sequencing are individual to each client. Consequently, the two clients at

this point are viewing the same three-dimensional geometry data but may have

different viewing perspectives.

The ability to individually view the same geometry data is analogous to two people

looking at a three-dimensional object, say, an open book. One person can see the title

-17-

and author on the front cover, while the other can read the pages. While their views
are different, there is a shared context for conversing.

To present an identical image on both monitors simultaneously, rendering controls
such as view transformations and animation sequencing must be consistent. The
graphics transformation matrix controls the mapping between geometry data and
the screen representation. In order for identical images to be viewed by both clients,
the rendering control information of one client is sent to the other client. The
receiving client loads the transformation matrix into its graphics pipeline, creating
an image identical to that of the sending client. The animation sequencing
information is used to synchronize the animation frame by frame.

Each client has a set of mouse-driven view transformation controls for rotation, pan,
and zoom. To see what is being presented by the other client "tracking mode" is
selected. This results in a message sent to the other client to begin sending the
rendering control information. The other client continuously updates the rendering
control information until tracking mode is deselected and "detached mode" is
entered. While in tracking mode, view transformation controls are disabled. While
in detached mode, the client is able to control the viewing perspective.

9. Discussion

Tempus Fugit uses the geometry partition to meet the imposing requirements for

visualizing complex three-dimensional unsteady fluid flow. The additional

requirements of providing a cooperative environment are met by Interview by

exploiting the short wait/immediate response paradigm for interactivity and a

hybrid of centralized and replicated CSCW architectures [15].

With the basic architecture of Tempus Fugit/Interview, optimization methodologies

are applied to individual tasks with an effect of improving the efficiency of the

overall application. The actual optimization methodologies must balance how long

the short wait is against the animation and immediate interaction rates. The profile

of where this balance lies is dependent on the visualization technique.

Unfortunately, an optimization for one visualization technique may conflict with an

optimization for another visualization technique. For instance, for the current

implementation of Tempus Fugit/Interview, sample data is organized to have time

dimensions of data arrays ordered sequentially on disk. This optimizes disk reads

over spatial subsets for such visualization techniques as grid surfaces, cutting

planes, and isosurfaces over subsets of the grid. Integral curve visualization

techniques, such as those used by the Virtual Windtunnel [4, 5], perform best with a

disk organization with the spatial dimensions of data arrays ordered sequentially.

Additional work is required to find an organization for disk-resident data which is

effective for both types of visualization techniques.

-18-

The geometry partition provides a balance of shared computation by the server

process to generate geometry data and replicated computation by the client

processes to generate images. This hybrid of the centralized and replicated

architectures defined by CSCW researchers is critical to the ability to present to

clients both views of a scene from different perspectives and from identical

perspectives.

10. Conclusion

The way in which computation is partitioned between constituent processors is an

important design consideration for distributed and cooperative applications. Many

applications have been implemented for use on a single machine before it becomes

desirable to operate the application in a distributed and/or cooperative environment.

Processing can be partitioned in ways which require minimal modification to a single

processor implementation. However, it is difficult for such partitions to take full

advantage of available network facilities. For applications which are designed from

the start to be distributed and/or cooperative, efficiencies in the passing of control, in

providing shared and private contexts, and in providing computational services

should guide how the tasks are partitioned between the constituent machines.

11. Acknowledgments

The author would like to thank E. Lisette Gerald-Yamasaki and Jeff Hultquist for

reviewing early versions of this paper and suggesting numerous improvements to
the final presentation.

12. References

[1] Bailey, F. R. Status and projections of the NAS program. In Computational

Mechanics. Advances and Trends. A. K. Noor, editor New York: American

Society of Mechanical Engineers, 1986, 7-21.

[2] Bancroft, G. V., Merritt, F. J., Plessel, T. C., Kelaita, P. G., McCabe, R. K. and

Globus, A. FAST: a multi-processed environment for visualization of

computational fluid dynamics. In Proc. Visualization '90 (San Francisco, CA,
Oct. 23-26, 1990) 14-23.

[3] Birrell, A. D., and Nelson, B. J. Implementing remote procedure calls. ACM

Trans. on Comp. Sys. 2, 1 (Jan. 1984), 39-59.

{4] Bryson, S. and Levit, C. The virtual windtunnel: an environment for the

exploration of three-dimensional unsteady flows. In Proc. Visualization '91

(San Diego, CA, Oct. 22-25, 1991), 17-24.

-19-

[5] Bryson, S. and Gerald-Yamasaki, M. J. The distributed virtual windtunnel.
(submitted to Supercomputing '92).

[6] Chlamtac, I. and Franta, W. R. Rationale, directions, and issues surrounding
high speednetworks. 78, 1 (Jan. 1990), 94-120.

[7] Choi, D. and Levit, C. Implementation of a distributed graphics system.
Internat. J. Supercomput. Appl. (Winter 1987), 82-95.

[8] Clinger, M. Very high speed network prototype development: Measurement of

effective transfer rates. In a report to NASA Ames Research Center in

satisfaction of Contract #NAS2-12332/CTO#9, (Oct. 1989).

[9] Crowley, T., Milazzo, P., Baker, E., Forsdick, H. and Tomlinson, R. MMconf: an

infrastructure for building shared multimedia applications. In Proc. CSCW '90

(Los Angeles, CA, Oct. 7-10, 1990) New York, NY: ACM (Order No: 612900),

329-342,

[10] DeFanti, T. A., Brown, M. D., and McCormick, B. H. Visualization - Expanding

scientific and engineering research opportunities. Computer 22, 8 (Aug. 1989),

12-25.

[11] Dewan, P. and Choudhary, R. Flexible user interface coupling in a

collaborative system. In Proc. CHI '91 (New Orleans, LA, Apr. 27-May 2,

1991) New York, NY: ACM (Order No: 608910), 41-48.

[12] Dineen, T. H., Leach, P. J., Mishkin, N. W., Pato, J. N., and Wyatt, G. L. The

network computing architecture and system: an environment for developing

distributed applications. Proceedings of Summer Usenix (June 1987), 385-398.

[13] Farber, D. Gigabit network testbeds. Computer 23, 9 (Sep. 1990), 77-79.

[14] Fowler, Jr., J. D., and McGowen, M. Design and implementation of a

supercomputer frame buffer system. In Proc. Supercomputing '88 (Orlando,

Florida, Nov. 14-18, 1988) Washington, DC: IEEE Computer Society Press

(Order No. 882), 140-147.

[15] Gerald-Yamasaki, M. Cooperative visualization of computational fluid

dynamics. NAS Applied Research Technical Report RNR-92-007 (submitted to

CSCW '92).

[16] Grudin, J. CSCW: the convergence of two development contexts. In Proc. CHI

'91 (New Orleans, LA, Apr. 27-May 2, 1991) New York, NY: ACM (Order No:

608910), 91-97.

[17] Haber, R. B., and McNabb, D. A. Eliminating distance in scientific computing:

- 20 -

an experiment in televisualization. Internat. J. Supercomput. Appl. 4, 4,

(Winter, 1990), 71-89.

[18] Haimes, R. and Giles, M. Visual3: interactive unsteady unstructured 3d

visualization. American Institute of Aeronautics and Astronautics (AIAA)

paper 91-0794. AIAA 29th Aerospace Sciences Meeting (Reno, NV, Jan. 7-10,

1991).

[19] Hibbard, B. and Santek, D. The vis-5d system for easy interactive

visualization. In Proc. Visualization '90 (San Francisco, CA, Oct. 23-26, 1990)
28-35.

[20] Jespersen, D. and Levit, C. Numerical simulation of flow past a tapered

cylinder. AIAA paper 91-0751. AIAA 29th Aerospace Sciences Meeting. (Reno,

Nevada, Jan. 7-10, 1991).

[21] Lasinski, T., Buning, P., Choi, D., Rogers, S., Bancroft, G. and Merritt, F. Flow

visualization of CFD using graphics workstations. Proc. AIAA 8th

Computaional Fluid Dynamics Conf. (Honolulu, Hawaii, June 9-11, 1987)

AIAA Paper 87-1180, 814-820.

[22] Lauwers, J. C. and Lantz, K. A. Collaboration awareness in support of

collaboration transparency: requirements for the next generation of shared

window systems. In Proc. CHI '90 (Seattle, WA, Apr. 1-5, 1990) New York, NY:
ACM (Order No: 608900), 303-311.

[23] O'Reilly & Associates Inc. X Window System Series Sebastapol: O'Reilly, 1990.

[24] Patterson, J. F., Hill, R. D., Rohall, S. L. and Meeks, W. S. Rendezvous: an

architecture for synchronous multi-user applications. In Proc. CSCW '90 (Los

Angeles, CA, Oct. 7-10, 1990) New York, NY: ACM (Order No: 612900), 317-
328.

[25] Rogers, S. E., Buning, P. G., and Merrit, F. J. Distributed interactive graphics

applications in computational fluid dynamics. Internat. J. Supercomput. Appl.

1, 4 (Winter 1987), 96-105.

[26] Salzman, D. Visualization in scientific computing: Summary of an NSF-

sponsored panel report on graphics, image processing, and workstations.

Internat. J. Supercomput. Appl. 1, 4 (Winter 1987), 106-108.

[27] Sandberg, R. The sun network file system: design, implementation, and

experience. Sun Microsystems, Inc. (1986).

[28] Schrage, M. Shared Minds. New York: Random House, 1990

- 21 -

[29] Silicon Graphics Computer Systems. Using the distributed graphics library.
4-Sight Programmer's Guide Document Number 007-2001-030 (1990).

[30] Smith, M. H., Van Dalsem, W. R., Dougherty, F. C., and Buning. P. G. Analysis

and visualization of complex unsteady three-dimensional flows. AIAA Paper

89-0139. AIAA 27th Aerospace Sciences Meeting (Reno, NV, Jan. 9-12, 1989).

[31] Stefik, M., Bowbrow, D. G., Foster, G., Lanning, S. and Tatar, D. WYWIWIS

revised: early experiences with multiuser interfaces. ACM Trans. on Office

Info. Sys. 5, 2 (Apr 1987), 147-167.

[32] Stefik, M., Foster, G., Bobrow, D. G., Kahn, K., Lanning, S., and Suchman, L.

Beyond the chalkboard: Computer support for collaboration and problem

solving in meetings. Commun. ACM 30, 1 (Jan. 1987), 32-47.

[33] Sun Microsystems. Request for Comment #1057 Network Working Group

(June, 1988).

[34] Walatka, P. P. and Buning, P. G. Plot3d user's manual. NASA Technical

Memorandum 101067, NASA Ames Research Center.

[35] Xerox Corporation. Courier: the remote procedure call protocol. Xerox System

Integration Standard (XSIS) 038112, (Dec. 1981).

[36] Yamasaki, M. Distributed library. NAS Applied Research Technical Report

RNR-90-008 (Apr. 1990).

- 22 -

Following Page:

This image is representative of the color and resolution of the images which can be
produced with Tempus Fugit/Interview. The display contains a collection of grid
surfaces shaded by cross flow velocity and isosurfaces for several values of cross flow
velocity over two subranges of the data.

SecondFollowing Page:

This image shows both Tempus Fugit and Interview clients invoked on the same
workstation. The Tempus Fugit window is drawn with a white background and the
Interview window is drawn with a black background. Each client has a view
transformation control window showing.

The same set of grid surfaces is displayed in the Tempus Fugit window as in the
Interview window, but from different viewing perspectives (top image)

In bottom image the Tempus Fugit client has selected tracking mode. This results in
the Interview client sending its rendering control information to the Tempus Fugit
client. Timing information in the rendering control information is used to
synchonize the animations. Changes in viewing perspective as controlled by the
Interview client are transmitted to the tracking client, Tempus Fugit, to maintain
the identical images through application of pan, zoom and rotation controls.

u

